Main Article Content

  • Yuant Tiandho
    Universitas Bangka Belitung


Download data is not yet available.


In  the weak-field limit condition, the gravitational force has a form that is analogous to the electromagnetic force. So that by using the analogy, we may propose the formula that called as gravitoelectromagnetism effect. Like the electromagnetic field, the gravity also predicted to has gravitoelectric field and gravitomagnetic field. In this paper we derive the expression of gravitational force as the entropic force according to correction of the generalized uncertainty principle (GUP) in the study of quantum gravity. Newton's gravitational force arise naturally due to the change of information (entropy) of a holographic screen that produced by object with mass M and it can be detected by other object which has mass m. From the formulation of gravity that we obtain, it appears that in the surrounding of object with mass M can be found the additional mass density which is indicated as a quantum foam. So according to the indications we calculate the gravitoelectric field and the gravitomagnetic field of the rotating object and we found that the result also influenced by the quantum fluctuations.

Pada kondisi medan lemah gaya gravitasi memiliki bentuk yang analogi dengan gaya elektromagnetik, sehingga melalui analogi tersebut dapat diajukan suatu rumusan yang disebut dengan efek gravitoelektromagnetisme. Layaknya medan elektromagnetik, gravitasi juga diprediksi memiliki medan gravitoelektrik dan medan gravitomagnetik. Di dalam artikel ini penulis mencoba menurunkan ungkapan gaya gravitasi sebagai gaya entropik berdasarkan koreksi dari generalized uncertainty principle (GUP) sesuai kajian gravitasi kuantum. Gaya gravitasi Newton muncul secara alami karena adanya perubahan informasi (entropi) dari layar holografik yang dihasilkan oleh objek bermassa M dan terdeteksi oleh objek lain yang bermassa m. Dari rumusan gaya gravitasi yang diperoleh tampak bahwa di sekitar objek bermassa terdapat densitas massa tambahan yang dapat dipandang sebagai quantum foam. Dengan adanya indikasi tersebut penulis menghitung medan gravitoelektrik dan gravitomagnetik pada objek yang berotasi dan ternyata kedua medan yang dihasilkan juga dipengaruhi oleh adanya fluktuasi kuantum.


gravitasi, gravitoelectromagnetism, gravitoelektromagnetisme, gravity, kuantum gravitasi, medan lemah, quantum gravity, weak field,


Adler, R. J., Chen, P. & santiago, D. I. (2001). The generalized uncertainty principle and black hole remnants. General Relativity and Gravitation, 33(12): 2101-2108.

Amati, D., Ciafaloni, M. & Veneziano, G. (1989). Can spacetime be probed below the string size?. Physics Letters B, 216: 41-47.

Camelia, G. A., Arzano, M. & Procaccini, A. (2004). Severe constraints on the loop-quantum-gravity energy-momentum dispersion relation from the black-hole area-entropy law. Physical Review D, 70: 107501.

Ciufolini, I. et al. (2013). Fundamental physics and general relativity with the LARES and LAGEOS satellites. Nuclear Physics B, 243: 180-193.

Dzierzak, P., Jezierski, J., Malkiewicz, P. & Piechocki, W. (2010). The minimum length problem of loop quantum cosmology. Acta Physica Polonica B, 41:. 717-726.

Gambini, R. & Pullin, J. (1999). Nonstandard optics from quantum space-time. Physical Review D, 59: 124021.

Garay, L. J. (1995). Quantum gravity and minimum length. International Journal of Modern Physics A, 10(2): 145-165.

Jacobson, T. (1995). Thermodynamics of space time: the Einstein equation of state. Physical Review Letter, 75: 1260.

Jin, W. (2014). Gravitomagnetism and Lense-Thirring effect of the sun and planets in the solar system. Progress in Astronomy, 32(3): 282-298.

Maldacena, J. (2014). Testing gauge/gravity duality on a quantum black hole. Science, 344(806): 806.

Medved, A. J. & Vagenas, E. C. (2004). When conceptual worlds collide: the generalized uncertainty principle and the Bekenstein-Hawking entropy. Phyiscal Review D, 70: 124021.

Merino, A. & Obregon, O. (2017). Modified entropies, their corresponding Newtonian forces, potentials, and temperatures. arXiv: 1701.01239v1.

Papadodimas, K. & Raju, S. (2014). Black hole interior in the holographic correspondence and the information paradox. Physical Review Letters, 112: 051301.

Paulson, S., Gleiser, M., Freese, K. & Tegmark, M. (2015). The unification of physics: the quest for a theory of everything. Annals of the New York Academy of Sciences, 1361: 18-35.

Ruggiero, M. & Tartaglia, A. (2002). Gravitomagnetic effects. Nuovo Cim. B, 117: 743-768.

Tiandho, Y. & Triyanta. (2014). Transfer Panas Lubang Hitam Schwarzschild. Jurnal MIPA, 37(2): 130-135.

Tiandho, Y. & Triyanta. (2016). Dirac Particles Emission from Reissner-Nordstrom-Vaidya Black Hole. Journal of Physics Conference Series, 739(1): 012146.

Tiandho, Y. (2016). Weber's Gravitational Force as Static Weak Field Approximation. AIP Conference Proceedings,1708: 070012.

Verlinde, E. (2011). On the origin of gravity and the laws of Newton. Journal of High Energy Physics,4:. 029(1)-26.

Article Sidebar

Published Aug 15, 2017
How to Cite
TIANDHO, Yuant. KOREKSI GAYA GRAVITASI DAN EFEK GRAVITOELEKTROMAGNETISME BERDASARKAN ENTROPI GRAVITASI KUANTUM. Jurnal Matematika, Sains, Dan Teknologi, [S.l.], v. 18, n. 2, p. 96-105, aug. 2017. ISSN 2442-9147. Available at: <>. Date accessed: 07 apr. 2020.